
CS 1112 Introduction to
Computing Using MATLAB

Instructor: Dominic Diaz

Website:
https://www.cs.cornell.edu/courses/cs111
2/2022fa/

Today: Cell arrays and object-oriented
programming

https://www.cs.cornell.edu/courses/cs1112/2022fa/
https://www.cs.cornell.edu/courses/cs1112/2022fa/

Agenda and announcements
● Last time

○ Data types in MATLAB
○ Cell arrays

● Today
○ Finish cell arrays
○ File input and output
○ Object-oriented programming

● Announcements
○ Project 5 due Monday 11/14

■ 1 long problem
■ If you would like us to suggest a partner for you, fill out the P5 partner survey

by the end of today!
○ Prelim 2 next Thursday!

■ Submit regrade request to prelim 2 time and location assignment on CMS if
you have a conflict

■ tutoring (sign up on CMS) Monday 11/7 - Wednesday 11/9
■ Review session 11/9 6:30 – 8pm in Thurston Hall room 203

New example

'A Hearts' '2 Hearts' '3 Hearts' ... 'A Clubs' ...

suit = {'Hearts','Clubs','Spades','Diamonds'};
rank = {'A','2','3','4','5','6','7','8','9','10','J','Q','K'};
i = 1;
D = {};
for k = 1:length(suit)

for j = 1:length(rank)
D{i} = [rank{j} ' ' suit{k}];
i = i + 1;

end
end

We have a deck of cards. How can we draw n random unique
cards from the deck?

alreadyPicked = zeros(1,n); % Store indices of already picked cards
cards = cell(1,n); % Store cards that have been picked
for i = 1:n

% generate random integer until a new card is picked
randInt = randi(length(D));

 while sum(randInt == alreadyPicked) > 0
 randInt = randi(length(D));
 disp(randInt)
 end

% store index of picked card and picked card itself
alreadyPicked(i) = randInt;
cards{i} = D{randInt};

end

'A Hearts' '2 Hearts' '3 Hearts' ...D

alreadyPicked = zeros(1,n); % Store indices of already picked cards
cards = cell(1,n); % Store cards that have been picked
for i = 1:n

% generate random integer until a new card is picked
randInt = randi(length(D));

 while sum(randInt == alreadyPicked) > 0
 randInt = randi(length(D));
 disp(randInt)
 end

% store index of picked card and picked card itself
alreadyPicked(i) = randInt;
cards{i} = D{randInt};

end

'A Hearts' '2 Hearts' '3 Hearts' ...

randi(n) generates
random integer from 1 to n

D

We have a deck of cards. How can we draw n random unique
cards from the deck?

alreadyPicked = zeros(1,n); % Store indices of already picked cards
cards = cell(1,n); % Store cards that have been picked
for i = 1:n

% generate random integer until a new card is picked
randInt = randi(length(D));

 while sum(randInt == alreadyPicked) > 0
 randInt = randi(length(D));
 disp(randInt)
 end

% store index of picked card and picked card itself
alreadyPicked(i) = randInt;
cards{i} = D{randInt};

end

'A Hearts' '2 Hearts' '3 Hearts' ...D

We have a deck of cards. How can we draw n random unique
cards from the deck?

alreadyPicked = zeros(1,n); % Store indices of already picked cards
cards = cell(1,n); % Store cards that have been picked
for i = 1:n

% generate random integer until a new card is picked
randInt = randi(length(D));

 while sum(randInt == alreadyPicked) > 0
 randInt = randi(length(D));
 disp(randInt)
 end

% store index of picked card and picked card itself
alreadyPicked(i) = randInt;
cards{i} = D{randInt};

end

'A Hearts' '2 Hearts' '3 Hearts' ...D

We have a deck of cards. How can we draw n random unique
cards from the deck?

alreadyPicked = zeros(1,n); % Store indices of already picked cards
cards = cell(1,n); % Store cards that have been picked
for i = 1:n

% generate random integer until a new card is picked
randInt = randi(length(D));

 while sum(randInt == alreadyPicked) > 0
 randInt = randi(length(D));
 disp(randInt)
 end

% store index of picked card and picked card itself
alreadyPicked(i) = randInt;
cards{i} = D{randInt};

end

'A Hearts' '2 Hearts' '3 Hearts' ...D

Checks if randInt has already been
picked and re-generates a random
integer until a new integer (that has
not been used) is generated

We have a deck of cards. How can we draw n random unique
cards from the deck?

alreadyPicked = zeros(1,n); % Store indices of already picked cards
cards = cell(1,n); % Store cards that have been picked
for i = 1:n

% generate random integer until a new card is picked
randInt = randi(length(D));

 while sum(randInt == alreadyPicked) > 0
 randInt = randi(length(D));
 disp(randInt)
 end

% store index of picked card and picked card itself
alreadyPicked(i) = randInt;
cards{i} = D{randInt};

end

'A Hearts' '2 Hearts' '3 Hearts' ...D

We have a deck of cards. How can we draw n random unique
cards from the deck?

File input and output
File input

Given some file 'data.txt' that we
need to process, can can use the
functions fopen, feof, fgetl, fclose

fid = fopen('data.txt', 'r');

k = 0;

D = {};

while ~feof(fid)

k = k + 1;

D{k} = fgetl(fid);

end

fclose(fid);

File output
Given some cell array C that we want to
write to a new file, we can use the
functions fopen, fprintf, fclose

% Assume C stores a bunch of char

arrays

fid = fopen('outData.txt', 'w');

for i = 1:length(C)

fprintf(fid, '%s\n', C{i});

end

fclose(fid);

File input and output
File output

Given some cell array C that we want to
write to a new file, we can use the
functions fopen, fprintf, fclose

% Assume C stores a bunch of char

arrays

fid = fopen('outData.txt', 'w');

for i = 1:length(C)

fprintf(fid, '%s\n', C{i});

end

fclose(fid);

This command opens the file outData.txt
(or creates the file if it does not already
exist). The 'w' indicates that we want to
write to the file.

fprintf allows us to print to a file. The first
input is the fileID, the second is the text
you want to print

● Last two inputs work the same as
regular fprintf('%s\n', C{i})

Always close a file that you open

Example: Saving data from a cell array to a text file

C = {1978, 'Michael Myers';

 1979, 'The Tall Man';

 1992, 'Candyman';

 2014, 'The Babadook';

 1990, 'Pennywise';

 1931, 'Frankenstein';

 1988, 'Chucky';

 1984, 'Freddy Krueger'};

fid = fopen('Halloween.txt', 'w');

[nr, nc] = size(C);

for i = 1:nr

 fprintf(fid, '%d %s\n', C{i,1}, C{i,2});

end

fclose(fid);

Take care to ensure that there are
not extra lines at the end of this file.
How the code is currently written,
there will be an extra empty line at
the end of the file. How can we
prevent this?

A note on vectorized code

% vectorized code to add

% two vectors

a = rand(1,4);

b = rand(1,4);

c = a + b;

% non-vectorized version

a = rand(1,4);

b = rand(1,4);

c = [];

for k = 1:length(a)

c(k) = a(k) + b(k);

end

Vectorized code refers to operations that are performed on multiple components of a vector at the same time
(in one statement).

Left: addition happens for all components of a and b at the same time (in one statement)
Right: addition happens on one component of a and one component of b at a time

If we say no vectorized code, you want to perform an operation
on some array element-by-element

End of prelim 2
 material!

Packaging data: options for storing a point (-4, 3.1)

● Simple scalars x
 y

● Simple vector pointVec

● Cell Array pointC

● Object pt

-4

3.1

3.1-4

3.1-4

 x

 y

-4

3.1

Ungrouped data

Related data grouped into an array.
Can be homogeneous data (like in
a simple vector) or heterogenous
data (like in a cell array)

Related data grouped
according to a class
definition. Allows us to group
data and have names for
each property of this data.

A card game developed in two ways
● Develop the algorithm of the

card game
○ Set up a deck as an array of

cards
○ Shuffle the cards
○ Deal card to the players
○ Evaluate each player’s hand

to determine winner

● Identify the “objects” in the game
and define each
○ Card

■ Properties: suit, rank
■ Actions: compare, show

○ Deck
■ Properties: array of

cards
■ Actions: shuffle, deal,

get #cards
○ Hand …
○ Then write the game–the

algorithm–using objects of
the above “class”

A card game developed in two ways
● Develop the algorithm of the

card game
○ Set up a deck as an array of

cards
○ Shuffle the cards
○ Deal card to the players
○ Evaluate each player’s hand

to determine winner

● Identify the “objects” in the game
and define each
○ Card

■ Properties: suit, rank
■ Actions: compare, show

○ Deck
■ Properties: array of

cards
■ Actions: shuffle, deal,

get #cards
○ Hand …
○ Then write the game–the

algorithm–using objects of
the above “class”

Procedural Programming:
Focus on the algorithm (the procedures)
necessary for solving the problem

Object-Oriented Programming:
Focus on the design of the objects (data
+ actions on that data) necessary for
solving a problem

Two steps of object-oriented programming

● Define the classes (of the objects)
○ Identify the properties (data) and actions (functions) of each class

● Create the objects (from the classes) that are then used—that interact with
one another

Example class: rectangle

● Properties that define a rectangle
○ xLL, yLL, width, height

● Methods (actions we want to be able to do with a rectangle)
○ Calculate area
○ Calculate perimeter
○ Draw the rectangle
○ Intersect (the intersection between two rectangles is a rectangle!)

(xLL, yLL)

In OOP, we’ll be able to create an object of class
rectangle and easily apply all of these methods on
this object

Objects and classes
● A class is a data specification

○ Basically like how a cookie cutter
specifies the shape of a cookie

● An object is a concrete instance of the
class
○ Need to apply the cookie cutter to

get a cookie
○ Many instances can be made

using the class
○ Instances do not interfere with

one another. For example, biting
the head off another cookie
doesn’t remove the heads of the
other cookies

First look at a class

Class Interval

An interval has two properties
● left, right

Actions—methods— of an interval
include
● Scale: make the interval larger or

smaller
● Shift: move the interval
● Check if two intervals overlap

classdef Interval < handle

properties
left
right

end

methods
function scale(self, f)

…
end

function shift(self, f)
…

end

function Inter = overlap(self, f)
…

end
end

end

To specify the properties and actions of
an object is to define its class.

